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A C n H n Limit of Longicyclic Stabilization 

Sir: 

Synthetic applications of the Huckel MO model have largely 
been limited to those unsaturated hydrocarbons that are pla­
nar, or pericyclic, or both.1 An alternative topology, the 
longicyclic, extends the range of the Huckel model from two 
dimensions into three.2 The topologically required stabilization 
rule is then somewhat different.3 Its limits, as yet, are less well 
defined. It rationalizes the stability of the norbornadienyl 
cation,4 the inaccessibility of the norbornadienyl anion,5 and 
the effect of charge on the direction of bicyclo[3.2.2]nona-
trienyl ;== barbaralyl equilibration.6 

The synthetic criterion is more demanding. One expects a 
fruitful stabilization rule to anticipate the successful prepa­
ration of easily isolable cations and anions, under reasonably 
standard conditions, and in the absence of empirical analogy. 
This criterion has now been satisfied in two longicyclic syn­
theses, those of the bicyclo[3.2.2]nonatrienyl anion ( I ) 7 and 
bicyclo[3.3.2]decatrienyl dianion (2).7b 

£ it" 
I Z 

The longicyclic rule3 anticipates the next higher homologue, 
bicyclo[4.3.2]undecatetraenyl, to be stable both as the anion 
and as the cation.83 We here report our failure to obtain the 
anion under conditions closely similar to those that had earlier 
provided 1 and 2. Satisfaction of the synthetic criterion is now 
frustrated by anionic rearrangement. Cationic rearrangement 
had similarly prevented isolation and characterization of the 
bicyclo[4.3.2]undecatetraenyl cation.9 It is therefore the 
carbon skeleton, and not the charge, that facilitates rear-

Figure 1. Complete spin decoupling results: solid block, elimination of 
2-13-Hz coupling; • , elimination of 1.0-1.5-Hz coupling; +, inaccessible 
or ambiguous; open block, no discernible effect. 

Table 1.1H NMR Spectrum of 4° 

Appearance/ 
Assignment 5 Area* J in Hz 

6.52 
6.09 
5.93 
5.80 
5.52 
2.871 
2.82J 
2.60 
2.52 
1.65 

1.46 

1.02 
1.95 
1.02 
1.07 
0.96 

1.97 

0.97 
0.98 
1.03 

1.05 

dd ,7 a c = 7.5, / ah = 8.5 
d, J-Oi = Jbl = 1.5 
dd, / a c = /eg = 7.5 
dd, Jde = 9.7, Jdh = 8.0 
dd, Jit = 9.7, JeS = 5.5 

I ddd, Jel = 5.5, Jf1 = 5.5, Jb{ = 1.5 
\ddd, ./cg = 7.5, J(g = 5.5, / g i = 6.5 

m 
m 
ddd, 7 j k = 13.0, iy = 10.5, 7h j = 

4.5 
d d d , 7 j k = 1 3 . 0 , y i k = 2.5,7h k = 

2.0 

" 0.03 M in CDCl3 at 300 MHz. * Normalized to 12 protons. 
c Apparent first-order splittings. 

rangement. The course of the anionic rearrangement and its 
absence from 1 and 2 both correspond to an explicitly predicted 
limit of longicyclic stabilization.8b 

A persistent deeply purple solution was easily generated by 
treating sy«-9-methoxybicyclo[4.3.2]undecatetraene (3)10 

with lithium in tetrahydrofuran. NMR spectra of this solution 
(and of its recrystallized solute) were unfortunately obscured 
by recalcitrant impurities. Structurally useful information 
could only be obtained by methanol protonation at —78 0 C. 
This quenched the color and provided a new CnHi2 hydro­
carbon as the exclusive volatile product in 27% yield.11'12 

The structure of this hydrocarbon was first defined to be an 
asymmetric tricycloundecatriene by its 13C NMR (<5 142.1, 
141.7, 139.7, 136.2, 135.8, 131.5, 48.0, 45.5, 42.1, 35.6, and 
31.9 ppm) and 1H NMR spectra (Table I). Next, a proton 
connectivity pattern (4a, Figure 1) was constructed by the 
sequential decoupling of all 2-13-Hz coupling constants. This 
pattern allows the residual cw-alkene to be joined in either one 
of two ways. Of these, only that represented by tricy-
clo[5.3.1.04,8]undeca-2,5,9-triene (4) is asymmetric. The 
complete list of possible isomers (48 tricyclics that lack 
quanternary carbons and exocyclic methylenes13) reveals no 
other viable candidate. 

The 1H NMR assignments of Figure 1 are generally con-
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sistent with those reported for similar structures.14 The critical 
assignment of Cn proton stereochemistry (vide infra) follows 
from the agreement of observed and calculated 3J.15 If the first 
set of observed 3J (10.5,4.5 Hz, Table I) is matched with those 
calculated for JV] (9.5 Hz, 6 = 27°) and Jhi (4.1 Hz, d = 54°) 
and the second set (2.5,2.0 Hz) matched with those calculated 
for Jik (2.5 Hz, 8 = 62°) and / h k (0.1 Hz, 6 = 95°), a signifi­
cantly better fit is obtained than if the assignments were re­
versed. 

The anionic mechanism of Scheme I is to be regarded as 
plausible rather than established.16 Attack of the three- onto 
the four-carbon bridge of the longicyclic anion (5) generates 
the tricyclic isomer (6). All illustrated, 6 is assumed to possess 
some measure of trishomocyclopentadienyl pericyclic stabi­
lization that may facilitate the rearrangement.17 

We think it more significant, however, that 4 is not formed 
by a rapid thermal rearrangement of the still unknown bicy-
clo[4.3.2]undecatetraene (7). Methanol-0-*/ quenching of the 
anionic solution introduced 0.464 ± 0.009 deuterium atoms 
exclusively at the endo methylene position.18 Such stereo-
specificity exactly matches that of the pericyclic bishomocy-
clopentadienyl bicyclo[3.2.1]octadienyl anion.19 Had 7 been 
an intermediate, the isotopic label would have appeared at the 
exo position of Cn and/or at C2. 

Clearly, the preparative value of the longicyclic stabilization 
rule does not extend to the CnHn bicyclo[4.3.2]undecate-
traene skeleton. In a similar way, the preparative value of the 
pericyclic [An + 2] stabilization rule also falters when its 
homologation reaches Ci0HiO.20 Subsequent homologation, 
however (to Ci2H12"2,213 Ci4HM,21b Ci6H,6

+2,21c and 
C17H n~ 21d), recovers the preparative value of the pericyclic 
stabilization rule. It remains to be seen whether subsequent 
longicyclic homologation will behave similarly. 
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A Novel Inhibitor of Steroid Biosynthesis 

Sir: 

During studies1 of the oxidative demethylation at C-4 in the 
latter stages of steroid biosynthesis we have discovered that 
4,4,10/3-trimethyl-;/WM-decal-3/3-ol2 (1, TMD), first prepared 
in 1958,3 has important biochemical properties. The evidence 
described herein demonstrates that TMD is a specific inhibitor 
of cholesterol biosynthesis in both rat liver enzyme preparations 
and cultured mammalian cells, and indicates that inhibition 
occurs at the cyclization of squalene oxide. 

Initial experiments were run to determine whether TMD 
would act as a bicyclic analogue of 4,4-dimethyl steroids and 
be demethylated by a standard Sin rat liver homogenate4 

(Sio-RLH). However, when rfi-TMD5 labeled with tritium6 

was incubated with Sio-RLH, no demethylated product was 
detected. Instead, 4,4,10J3-trimethyl-fra/u-decalin-3|8,7/3-diol 
(2) was isolated as the major product. This metabolite, iden-

0002-7863/78/1500-4900S01.00/0 ©1978 American Chemical Society 


